Tenfibgen Ligand Nanoencapsulation Delivers Bi-Functional Anti-CK2 RNAi Oligomer to Key Sites for Prostate Cancer Targeting Using Human Xenograft Tumors in Mice

نویسندگان

  • Janeen H. Trembley
  • Gretchen M. Unger
  • Vicci L. Korman
  • Md. Joynal Abedin
  • Lucas P. Nacusi
  • Rachel I. Vogel
  • Joel W. Slaton
  • Betsy T. Kren
  • Khalil Ahmed
  • Gnanasekar Munirathinam
چکیده

Protected and specific delivery of nucleic acids to malignant cells remains a highly desirable approach for cancer therapy. Here we present data on the physical and chemical characteristics, mechanism of action, and pilot therapeutic efficacy of a tenfibgen (TBG)-shell nanocapsule technology for tumor-directed delivery of single stranded DNA/RNA chimeric oligomers targeting CK2αα' to xenograft tumors in mice. The sub-50 nm size TBG nanocapsule (s50-TBG) is a slightly negatively charged, uniform particle of 15 - 20 nm size which confers protection to the nucleic acid cargo. The DNA/RNA chimeric oligomer (RNAi-CK2) functions to decrease CK2αα' expression levels via both siRNA and antisense mechanisms. Systemic delivery of s50-TBG-RNAi-CK2 specifically targets malignant cells, including tumor cells in bone, and at low doses reduces size and CK2-related signals in orthotopic primary and metastatic xenograft prostate cancer tumors. In conclusion, the s50-TBG nanoencapsulation technology together with the chimeric oligomer targeting CK2αα' offer significant promise for systemic treatment of prostate malignancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors

CK2, a protein serine/threonine kinase, promotes cell proliferation and suppresses cell death. This essential-for-survival signal demonstrates elevated expression and activity in all cancers examined, and is considered an attractive target for cancer therapy. Here, we present data on the efficacy of a tenfibgen (TBG) coated nanocapsule which delivers its cargo of siRNA (siCK2) or single strande...

متن کامل

CK2 Molecular Targeting—Tumor Cell-Specific Delivery of RNAi in Various Models of Cancer

Protein kinase CK2 demonstrates increased protein expression relative to non-transformed cells in the majority of cancers that have been examined. The elevated levels of CK2 are involved in promoting not only continued proliferation of cancer cells but also their resistance to cell death; thus, CK2 has emerged as a plausible target for cancer therapy. Our focus has been to target CK2 catalytic ...

متن کامل

Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model

Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...

متن کامل

Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer.

BACKGROUND Standard anti-proliferative chemotherapy is relatively ineffective against slowly proliferating androgen-independent prostate cancer cells within metastatic sites. In contrast, the lipophilic cytotoxin thapsigargin, which causes apoptosis by disrupting intracellular free Ca2+ levels, is effective against both proliferative and quiescent (i.e., G0-arrested) cells. However, thapsigargi...

متن کامل

RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer.

Several studies link disease progression, recurrence, and treatment failures to the cancer stem-like cell (CSC) subpopulation within the heterogeneous tumor cell population. Myc is a transcription factor having a central function in stem cell biology and in human cancers. Hence, Myc represents an attractive target to develop CSC-specific therapies. Recent findings suggest that Myc transcription...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014